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1. Motivating examples & methods

Maximum adversarial loss

2. No good solvers for CDL yet
(Constrained deep learning: CDL)

1.1 Robustness evaluation

Problem: tricky to set iteration number & step size

i.e.,  tricky to decide where to stop 

• Projected gradient descent

• Penalty method

Problem: large constraint violation or suboptimal solution

3. A solver for constrained optimization

• Principled answers to issues in CDL methods

Stationarity & feasibility check: KKT condition

Line search methods

Gradient-sampling-based idea for nonsmoothness

• A principled solver: GRANSO

Nonconvex, nonsmooth, constrained

Keep advantages:
Principled stopping criterion and line search
⇒ obtain a solution with certificate 

BFGS-Sequential quadratic programming
⇒ reasonable speed and high-precision solution

Problems:
Lack of auto-differentiation
Lack of GPU Support
No native support of tensor variables 

First general-purpose solver for CDL

Advantages:

Auto-differentiation; GPU Support; support of tensor variables 

See ncvx.org for detailed examples for CDL!
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Neural structural optimization Solution from PyGRANSO (ours)

Cons of SOTA unconstrained optimization methods:

• Solving linear systems to eliminate the physical constraint

• Use problem specific technique to handle design constraints

• Cannot handle discrete-valued optimization variables

1.2 Neural Topology Optimization

4. NCVX PyGRANSO

min
𝑥∈ℝ𝑛

𝑓 𝒙 , 𝑠. 𝑡. 𝑐𝑖 𝒙 ≤ 0, ∀ 𝑖 ∈ 𝜁; 𝑐𝑗 𝒙 = 0, ∀ 𝑗 ∈ 𝜉
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𝜽,𝒖

𝒖⊺𝑲 𝑔𝜽 𝜷 𝒖

𝑠. 𝑡. 𝑲 𝑔𝜽 𝜷 𝒖 = 𝒇

𝑽 𝑔𝜽 𝜷 ≤ 𝑣0
𝑔𝜽 𝜷 ∈ 0,1 𝑑

Constrained Deep Learning Applications

max
𝒙′

ℓ(𝑦, 𝑓𝜽 𝒙′ )

𝑠. 𝑡. 𝑑(𝒙, 𝒙′) ≤ 𝜀
𝒙′ ∈ 0,1 𝑛

min
𝒙′

𝑑(𝒙, 𝒙′)

𝑠. 𝑡. max
𝑖≠𝑦

𝑓𝜽
𝑖 𝒙′ ≥𝑓𝜽

𝑦
𝒙′

𝒙′ ∈ 0,1 𝑛

Minimum distortion radius

1.3 Other problems

• Lagrangian methods for imbalanced learning: infeasible solution, 

slow convergence

• Augmented Lagrangian methods for PINNs: infeasible solution

• First-order solver for PINNs: low quality solution

⇒ impossible to do deep learning with GRANSO!

Auto-Differentiation

Orthogonal dictionary learning

General Tensor Variables

Matrix input

Higher order tensor input

GRANSO PyGRANSO

min
𝒒∈ℝ𝑛

𝑓(𝒒) ≐
1

𝑚
∗∥ 𝒒⊺𝒀 ∥1, 𝑠. 𝑡. ∥ 𝒒 ∥2= 1

Constraint-folding
Reduce # of constraints: reduce the cost of QP in the SQP

h𝑗 𝒙 = 0 ⇔ h𝑗 𝒙 ≤ 0,

𝑐𝑖 𝒙 ≤ 0 ⇔ max 𝑐𝑖 𝒙 , 0 ≤ 0,

ℱ( h1 𝒙 ,⋯ , h𝑗 𝒙 ,max 𝑐1 𝒙 , 0 ⋯ ,max 𝑐𝑖 𝒙 , 0 ) ≤ 0

Equality Constraint

Inequality Constraint
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