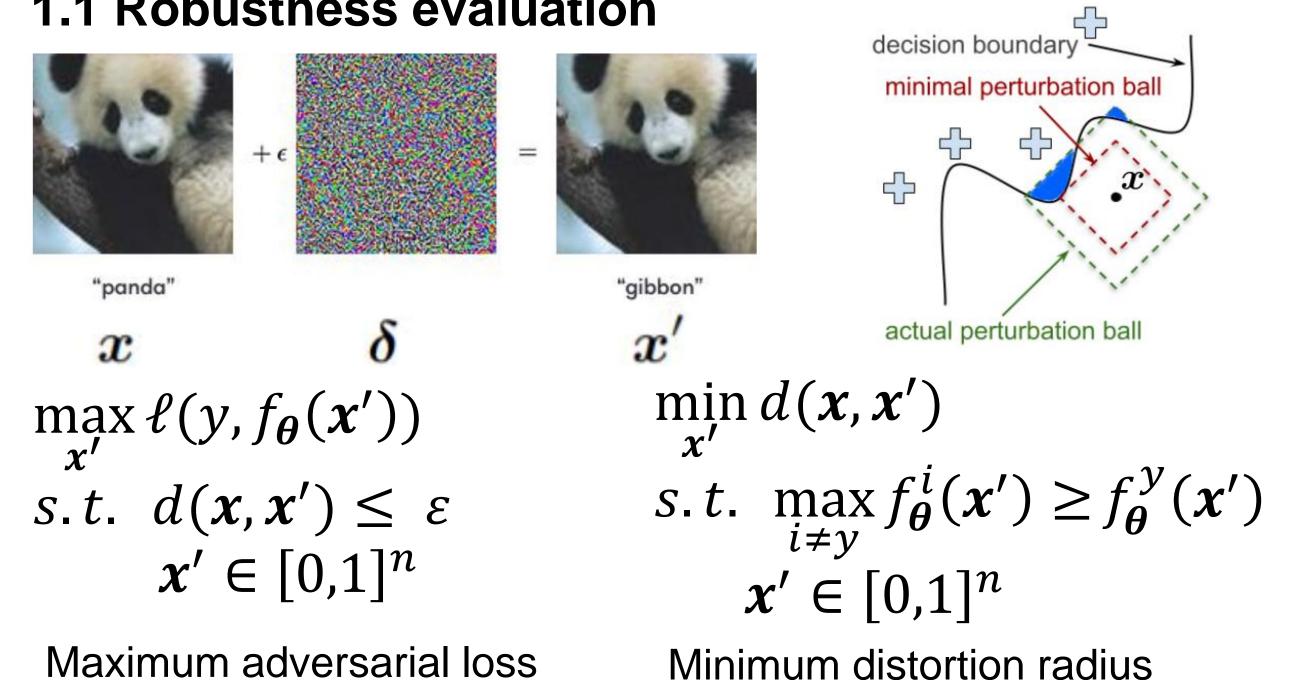
1. Motivating examples & methods

(Constrained deep learning: CDL)

1.1 Robustness evaluation



Projected gradient descent

Problem: tricky to set **iteration number** & **step size** i.e., tricky to decide where to stop

Penalty method

Problem: large **constraint violation** or **suboptimal** solution

1.2 Neural Topology Optimization

min <i>θ,u</i>	$\boldsymbol{u}^{T}\boldsymbol{K}(g_{\boldsymbol{\theta}}(\boldsymbol{\beta}))\boldsymbol{u}$
	$K(g_{\theta}(\boldsymbol{\beta}))\boldsymbol{u} = \boldsymbol{f}$
	$V(g_{\theta}(\boldsymbol{\beta})) \leq v_0$
	$g_{\boldsymbol{\theta}}(\boldsymbol{\beta}) \in \{0,1\}^d$

Neural structural optimization

Solution from *PyGRANSO* (ours)

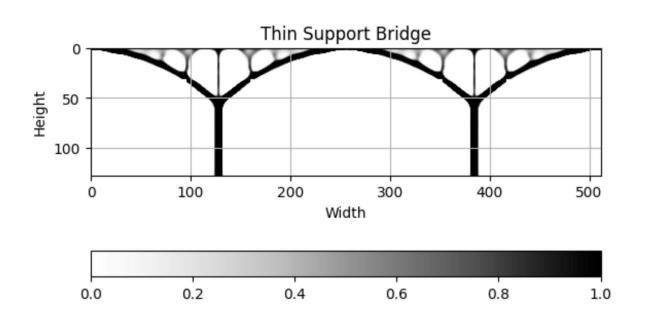
Cons of SOTA unconstrained optimization methods:

- **Solving linear systems** to eliminate the physical constraint
- Use **problem specific technique** to handle design constraints
- Cannot handle discrete-valued optimization variables

1.3 Other problems

- Lagrangian methods for imbalanced learning: infeasible solution, slow convergence
- **Augmented Lagrangian methods** for PINNs: infeasible solution
- First-order solver for PINNs: low quality solution

Ref: [1] Liang, B., Mitchell, T., & Sun, J. (2022). NCVX: A general-purpose optimization solver for constrained machine and deep learning. In OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop). [2] Liang, B., Peng, L., Cui, Y., Mitchell, T., & Sun, J. (2023). Optimization and Optimizers for Adversarial Robustness. arXiv preprint arXiv:2303.13401. [3] Liang, H., Liang, B., Cui, Y., Mitchell, T., & Sun, J. (2022). Optimization for robustness evaluation beyond lp metrics. In OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop).



When Deep Learning Meets Nontrivial Constraints

Wenjie Zhang¹, Buyun Liang¹, Ryan de Vera¹, Hengyue Liang², Tim Mitchell³, Ju Sun¹ ¹ Department of Computer Science and Engineering, University of Minnesota ² Department of Electrical and Computer Engineering, University of Minnesota ³ Department of Computer Science, Queens College, City University of New York

2. No good solvers for CDL yet

Solvers or modeling languages	Nonconvex	Nonsmooth	Differentiable manifold constraints	General smooth constraint	Specific constrained ML problem	General CDL
PyTorch, Tensorflow, JAX, MXNet	\checkmark	\checkmark	×	×	×	×
CVX, AMPL, YALMIP, SDPT3, Cplex, Gurobi*, SDPT3, TFOCS	×	✓	×	×	×	×
(Py)manopt, Geomstats, McTorch, Geoopt	\checkmark	✓	\checkmark	×	×	×
KNITRO, IPOPT, GENO, ensmallen, TFCO, Cooper	\checkmark	✓	\checkmark	~	×	×
Scikit-learn, MLib, Weka	✓	✓	×	×	\checkmark	×

3. A solver for constrained optimization

Principled answers to issues in CDL methods

Stationarity & feasibility check: KKT condition Line search methods **Gradient-sampling**-based idea for nonsmoothness

A principled solver: GRANSO

 $\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}), s.t. \ c_i(\boldsymbol{x}) \le 0, \forall i \in \zeta; c_j(\boldsymbol{x}) = 0, \forall j \in \xi$

Nonconvex, nonsmooth, constrained

Keep advantages:

Principled stopping criterion and line search \Rightarrow obtain a solution with certificate **BFGS-Sequential quadratic programming**

 \Rightarrow reasonable speed and high-precision solution

Problems:

Lack of **auto-differentiation** Lack of **GPU** Support No native support of **tensor** variables

 \Rightarrow impossible to do deep learning with GRANSO!

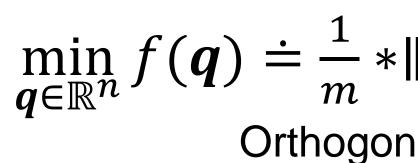
4. NCVX PyGRANSO

First general-purpose solver for CDL

Advantages:

Auto-differentiation; GPU Support; support of tensor variables

Auto-Differentiation



<pre>function[f,fg,ci,cig,ce,ceg]=fn(q) f = 1/m*norm(q'*Y, 1);%obj</pre>	<pre>def fn(X_struct): q = X_struct.q</pre>
fg = 1/m*Y* <mark>sign(Y'</mark> *q);%obj grad	f = 1/m*norm(q.T@Y, p=1) # obj
ci = [];cig = [];%no ineq constr	ce = pygransoStruct()
ce = q' *q - 1; % eq constr	ce.c1 = q.T@q - 1 # eq constr
ceg = 2*q; % eq constr grad	<pre>return [f,None,ce]</pre>
end	<pre>var_in = {"q": [n,1]}# def variable</pre>
<pre>soln = granso(n,fn);</pre>	<pre>soln = pygranso(var_in, fn)</pre>

GRANSO

General Tensor Variables

<pre>var_in = {"M":[d1,d2],"S" # objective function</pre>
<pre>f = torch.norm(M, p='nuc'</pre>
Mat
<pre>var_in = {"x_tilde":list(ing</pre>
<pre>adv_inputs = X_struct.x_tile</pre>
epsilon = eps

logits_outputs = model(adv_inputs)

Constraint-folding

Reduce # of constraints: reduce the cost of QP in the SQP

 $h_i(\mathbf{x}) = 0 \Leftrightarrow |h_i(\mathbf{x})| \leq 0$ **Equality Constraint** $c_i(\mathbf{x}) \leq 0 \Leftrightarrow \max\{c_i(\mathbf{x}), 0\} \leq 0,$ Inequality Constraint $\mathcal{F}(|\mathbf{h}_1(\mathbf{x})|, \cdots, |\mathbf{h}_i(\mathbf{x})|, \max\{c_1(\mathbf{x}), 0\} \cdots, \max\{c_i(\mathbf{x}), 0\}) \le 0$

Constrained Deep Learning Applications

See ncvx.org for detailed examples for CDL!

$\min_{\boldsymbol{q}\in\mathbb{R}^n} f(\boldsymbol{q}) \doteq \frac{1}{m} * \| \boldsymbol{q}^{\mathsf{T}}\boldsymbol{Y} \|_1, \quad s.t. \| \boldsymbol{q} \|_2 = 1$

Orthogonal dictionary learning

PyGRANSO

