Single Instance or Data Driven: Two ways of solving inverse problems

OF MINNESOTA

Wenjie Zhang¹, Yuxiang Wan¹, Zhong Zhuang², Taihui Li¹, Hengkang Wang¹, Ju Sun¹ ¹ Department of Computer Science and Engineering, University of Minnesota ² Department of Physics and Astronomy, University of California, Los Angeles

1. Background

Inverse Problems:

Estimating **Ground Truth** *x* from **Observation** $y \approx f(x)$

Methods:

- Maximum A posteriori Method $\min_{\mathbf{x}} \ell(\mathbf{y}, \mathbf{f}(\mathbf{x})) + \lambda \Omega(\mathbf{x})$
- Single Instance Method
- Data Driven Method

2. Single Instance Methods

2.1 Deep Image Prior

 $x \approx G_{\theta}(z)$

$$\min_{\boldsymbol{\theta}} \ell(\boldsymbol{y}, \boldsymbol{f} \circ \boldsymbol{G}_{\boldsymbol{\theta}}(\boldsymbol{z})) + \lambda \boldsymbol{\Omega} \circ \boldsymbol{G}_{\boldsymbol{\theta}}(\boldsymbol{z})$$

Data Fitting

Regularizer

2.2 Blind Image Deblur

Blur Input **y**

Sharp GT *x* Blur Kernel **k**

Forward Model of Blurring Process

y = k * x + n

Challenges for the Real-World Deblur

- Unknown Kernel Size
- substantial noise

Ref: [1] Zhuang, Z., Li, T., Wang, H., & Sun, J. (2024). Blind image deblurring with unknown kernel size and substantial noise. International Journal of Computer Vision. [2] Zhuang, Z., Yang, D., & Sun, J. (2023). Phase Retrieval Using Double Deep Image Priors. NeurIPS 2023 Workshop on Deep Learning and Inverse Problems. [3] Zhang, W., Wan, Y., Zhuang, Z., & Sun, J. (2024). What is Wrong with End-to-End Learning for Phase Retrieval? arXiv preprint arXiv:2403.15448. [4] K. Jaganathan, Y. C. Eldar & B. Hassibi Phase Retrieval: An Overview of Recent Developments

Our Method: DIP + SIREN SelfDeblur High Noise SRN Gaussian Shot Impulse Low Noise 26^{-1} ZHANG20 DeblurGAN-v2 SelfDeblur Our Shot Gaussian Impulse

Scientific Application Scanning transmission electron microscopy (STEM)

Challenges: low signal-to-noise ratios, Unknown kernel Size, no reliable ground truth

BID Reconstruction

Forward Model: $y = |\mathcal{F}(x)|^2$

GT x

Observation **y**

